Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(9): 4620-4627, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38323483

RESUMEN

Construction of a built-in electric field has been identified as an attractive improvement strategy for photoelectrochemical (PEC) water splitting by facilitating the carrier extraction from the inside to the surface. However, the promotion effect of the electric field is still restrained by the confined built-in area. Herein, we construct a microscale built-in electric field via gradient oxygen doping. The octahedral configuration of the synthesized CdIn2S4 (CIS) provides a structural basis, which enables the subsequent oxygen doping to reach a depth of ∼100 nm. Accordingly, the oxygen-doped CIS (OCIS) photoanode exhibits a microscale built-in electric field with band bending. Excellent PEC catalytic activity with a photocurrent density of 3.69 mA cm-2 at 1.23 V vs. RHE is achieved by OCIS, which is 3.1 times higher than that of CIS. Combining the results of thorough characterization and theoretical calculations, accelerating migration and separation of charge carriers have been determined as the reasons for the improvement. Meanwhile, the recombination risk at the doping centers has also been reduced to the minimum via optimal experiments. This work provides a new-generation idea for constructing a built-in electric field from the view point of bulky configuration towards PEC water splitting.

2.
Plant Cell ; 35(6): 2316-2331, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36856605

RESUMEN

Apurinic/apyrimidinic (AP) sites are one of the most abundant DNA lesions and are mainly repaired by AP endonucleases (APEs). While most eukaryotic genomes encode two APEs, plants usually possess three APEs, namely APE1L, APE2, and ARP. To date, the biological relevance and functional divergence of plant APEs are unclear. Here, we show that the three plant APEs have ancient origins, with the APE1L clade being plant-specific. In Arabidopsis thaliana, simultaneously mutating APE1L and APE2, but not ARP alone or in combination with either APE1L or APE2, results in clear developmental defects linked to genotoxic stress. Genetic analyses indicated that the three plant APEs have different substrate preferences in vivo. ARP is mainly responsible for AP site repair, while APE1L and APE2 prefer to repair 3'-blocked single-stranded DNA breaks. We further determined that APEs play an important role in DNA repair and the maintenance of genomic integrity in meiotic cells. The ape1l ape2 double mutant exhibited a greatly enhanced frequency of sporulation 1 (SPO11-1)-dependent and SPO11-1-independent double-stranded DNA breaks. The DNA damage response (DDR) was activated in ape1l ape2 to trigger pollen abortion. Our findings suggest functional divergence of plant APEs and reveal important roles of plant APEs during vegetative and reproductive development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hominidae , Animales , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Reparación del ADN/genética , Daño del ADN/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Endonucleasas/genética , Hominidae/metabolismo , Proteínas de Arabidopsis/genética
3.
BMC Plant Biol ; 22(1): 105, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260077

RESUMEN

BACKGROUND: The grains of foxtail millet are enriched in carotenoids, which endow this plant with a yellow color and extremely high nutritional value. However, the underlying molecular regulation mechanism and gene coexpression network remain unclear. METHODS: The carotenoid species and content were detected by HPLC for two foxtail millet varieties at three panicle development stages. Based on a homologous sequence BLAST analysis, these genes related to carotenoid metabolism were identified from the foxtail millet genome database. The conserved protein domains, chromosome locations, gene structures and phylogenetic trees were analyzed using bioinformatics tools. RNA-seq was performed for these samples to identify differentially expressed genes (DEGs). A Pearson correlation analysis was performed between the expression of genes related to carotenoid metabolism and the content of carotenoid metabolites. Furthermore, the expression levels of the key DEGs were verified by qRT-PCR. The gene coexpression network was constructed by a weighted gene coexpression network analysis (WGCNA). RESULT: The major carotenoid metabolites in the panicles of DHD and JG21 were lutein and ß-carotene. These carotenoid metabolite contents sharply decreased during the panicle development stage. The lutein and ß-carotene contents were highest at the S1 stage of DHD, with values of 11.474 µg /100 mg and 12.524 µg /100 mg, respectively. Fifty-four genes related to carotenoid metabolism were identified in the foxtail millet genome. Cis-acting element analysis showed that these gene promoters mainly contain 'plant hormone', 'drought stress resistance', 'MYB binding site', 'endosperm specific' and 'seed specific' cis-acting elements and especially the 'light-responsive' and 'ABA-responsive' elements. In the carotenoid metabolic pathways, SiHDS, SiHMGS3, SiPDS and SiNCED1 were more highly expressed in the panicle of foxtail millet. The expression of SiCMT, SiAACT3, SiPSY1, SiZEP1/2, and SiCCD8c/8d was significantly correlated with the lutein content. The expression of SiCMT, SiHDR, SiIDI2, SiAACT3, SiPSY1, and SiZEP1/2 was significantly correlated with the content of ß-carotene. WGCNA showed that the coral module was highly correlated with lutein and ß-carotene, and 13 structural genes from the carotenoid biosynthetic pathway were identified. Network visualization revealed 25 intramodular hub genes that putatively control carotenoid metabolism. CONCLUSION: Based on the integrative analysis of the transcriptomics and carotenoid metabonomics, we found that DEGs related to carotenoid metabolism had a stronger correlation with the key carotenoid metabolite content. The correlation analysis and WGCNA identified and predicted the gene regulation network related to carotenoid metabolism. These results lay the foundation for exploring the key target genes regulating carotenoid metabolism flux in the panicle of foxtail millet. We hope that these target genes could be used to genetically modify millet to enhance the carotenoid content in the future.


Asunto(s)
Carotenoides/metabolismo , Perfilación de la Expresión Génica , Redes y Vías Metabólicas/genética , Metabolómica , Semillas/genética , Semillas/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , China , Grano Comestible/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas , Variación Genética , Genotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...